General Category > Science, Technology and Knowledge

CONTROVERSIAL NEW THEORY SUGGESTS LIFE WASN'T A FLUKE OF BIOLOGY—IT WAS PHYSICS

(1/1)

Suppressed:
CONTROVERSIAL NEW THEORY SUGGESTS LIFE WASN'T A FLUKE OF BIOLOGY—IT WAS PHYSICS
AUTHOR: NATALIE WOLCHOVER
07.30.17  07:00 AM
https://www.wired.com/story/controversial-new-theory-suggests-life-wasnt-a-fluke-of-biologyit-was-physics/


The biophysicist Jeremy England made waves in 2013 with a new theory that cast the origin of life as an inevitable outcome of thermodynamics. His equations suggested that under certain conditions, groups of atoms will naturally restructure themselves so as to burn more and more energy, facilitating the incessant dispersal of energy and the rise of “entropy” or disorder in the universe. England said this restructuring effect, which he calls dissipation-driven adaptation, fosters the growth of complex structures, including living things. The existence of life is no mystery or lucky break, he told Quanta in 2014, but rather follows from general physical principles and “should be as unsurprising as rocks rolling downhill.”

Since then, England, a 35-year-old associate professor at the Massachusetts Institute of Technology, has been testing aspects of his idea in computer simulations. The two most significant of these studies were published this month—the more striking result in the Proceedings of the National Academy of Sciences and the other in Physical Review Letters. The outcomes of both computer experiments appear to back England’s general thesis about dissipation-driven adaptation, though the implications for real life remain speculative.

...

Often, the system settles into an equilibrium state, where it has a balanced concentration of chemicals and reactions that just as often go one way as the reverse. This tendency to equilibrate, like a cup of coffee cooling to room temperature, is the most familiar outcome of the second law of thermodynamics, which says that energy constantly spreads and the entropy of the universe always increases. (The second law is true because there are more ways for energy to be spread out among particles than to be concentrated, so as particles move around and interact, the odds favor their energy becoming increasingly shared.)

But for some initial settings, the chemical reaction network in the simulation goes in a wildly different direction: In these cases, it evolves to fixed points far from equilibrium, where it vigorously cycles through reactions by harvesting the maximum energy possible from the environment. These cases “might be recognized as examples of apparent fine-tuning” between the system and its environment, Horowitz and England write, in which the system finds “rare states of extremal thermodynamic forcing.”

...

But how and why do atoms acquire the particular form and function of a bacterium, with its optimal configuration for consuming chemical energy? England hypothesizes that it’s a natural outcome of thermodynamics in far-from-equilibrium systems.

The Nobel-Prize-winning physical chemist Ilya Prigogine pursued similar ideas in the 1960s, but his methods were limited. Traditional thermodynamic equations work well only for studying near-equilibrium systems like a gas that is slowly being heated or cooled. Systems driven by powerful external energy sources have much more complicated dynamics and are far harder to study.

...

Coffee cools down because nothing is heating it up, but England’s calculations suggested that groups of atoms that are driven by external energy sources can behave differently: They tend to start tapping into those energy sources, aligning and rearranging so as to better absorb the energy and dissipate it as heat. He further showed that this statistical tendency to dissipate energy might foster self-replication. (As he explained it in 2014, “A great way of dissipating more is to make more copies of yourself.”) England sees life, and its extraordinary confluence of form and function, as the ultimate outcome of dissipation-driven adaptation and self-replication. However, even with the fluctuation theorems in hand, the conditions on early Earth or inside a cell are far too complex to predict from first principles. That’s why the ideas have to be tested in simplified, computer-simulated environments that aim to capture the flavor of reality.

In the Physical Review Letters paper, England and his coauthors Tal Kachman and Jeremy Owen of MIT simulated a system of interacting particles. They found that the system increases its energy absorption over time by forming and breaking bonds in order to better resonate with a driving frequency. “This is in some sense a little bit more basic as a result” than the PNAS findings involving the chemical reaction network, England said.

...

Excerpt.  Read more at https://www.wired.com/story/controversial-new-theory-suggests-life-wasnt-a-fluke-of-biologyit-was-physics/

Sanguine:
Well, it does seem that this universe is set up to act in this way.... :pondering:

dfwgator:

http://www.youtube.com/watch?v=gFLvhKv-Lbo

Oceander:
Cool!

Suppressed:

--- Quote from: dfwgator on July 30, 2017, 08:47:02 pm ---
http://www.youtube.com/watch?v=gFLvhKv-Lbo

--- End quote ---

The universe doesn't care enough to be laughing behind my back..

Navigation

[0] Message Index

Go to full version