Author Topic: New discovery about distant galaxies: Stars are more massive than we thought  (Read 396 times)

0 Members and 1 Guest are viewing this topic.

Offline Kamaji

  • Hero Member
  • *****
  • Posts: 58,056
New discovery about distant galaxies:  Stars are more massive than we thought

Date: May 25, 2022

Source: University of Copenhagen - Faculty of Science

Summary: A team of astrophysicists has arrived at a major result regarding star populations beyond the Milky Way. The result could change our understanding of a wide range of astronomical phenomena, including the formation of black holes, supernovae and why galaxies die.

A team of University of Copenhagen astrophysicists has arrived at a major result regarding star populations beyond the Milky Way. The result could change our understanding of a wide range of astronomical phenomena, including the formation of black holes, supernovae and why galaxies die.

For as long as humans have studied the heavens, how stars look in distant galaxies has been a mystery. In a study published today in The Astrophysical Journal, a team of researchers at the University of Copenhagen's Niels Bohr Institute is doing away with previous understandings of stars beyond our own galaxy.

Since 1955, it has been assumed that the composition of stars in the universe's other galaxies is similar to that of the hundreds of billions of stars within our own -- a mixture of massive, medium mass and low mass stars. But with the help of observations from 140,000 galaxies across the universe and a wide range of advanced models, the team has tested whether the same distribution of stars apparent in the Milky Way applies elsewhere. The answer is no. Stars in distant galaxies are typically more massive than those in our "local neighborhood." The finding has a major impact on what we think we know about the universe.

"The mass of stars tells us astronomers a lot. If you change mass, you also change the number of supernovae and black holes that arise out of massive stars. As such, our result means that we'll have to revise many of the things we once presumed, because distant galaxies look quite different from our own," says Albert Sneppen, a graduate student at the Niels Bohr Institute and first author of the study.

Analyzed light from 140,000 galaxies

Researchers assumed that the size and weight of stars in other galaxies was similar to our own for more than fifty years, for the simple reason that they were unable to observe them through a telescope, as they could with the stars of our own galaxy.

*  *  *

Source:  https://www.sciencedaily.com/releases/2022/05/220525102952.htm